An Approach for Optimal Design of Robot Vision Systems
نویسنده
چکیده
The accuracy of a robot manipulator’s position in an application environment is dependent on the manufacturing accuracy and the control accuracy. Unfortunately, there always exist both manufacturing error and control error. Calibration is an approach to identifying the accurate geometry of the robot. In general, robots must be calibrated to improve their accuracy. A calibrated robot has a higher absolute positioning accuracy. However, calibration involves robot kinematic modeling, pose measurement, parameter identification and accuracy compensation. These calibrations are hard work and time consuming. For an active vision system, a robot device for controlling the motion of cameras based on visual information, the kinematic calibrations are even more difficult. As a result, even though calibration is fundamental, most existing active vision systems are not accurately calibrated (Shih et al., 1998). To address this problem, many researchers select self-calibration techniques. In this article, we apply a more active approach, that is, we reduce the kinematic errors at the design stage instead of at the calibration stage. Furthermore, we combine the model described in this article with a costtolerance model to implement an optimal design for active vision systems so that they can be used more widely in enterprise. We begin to build the model using the relation between two connecting joint coordinates defined by a DH homogeneous transformation.We then use the differential relationship between these two connecting joint coordinates to extend the model so that it relates the kinematic parameter errors of each link to the pose error of the last link. Given this model, we can implement an algorithm for estimating depth using stereo cameras, extending the model to handle an active stereo vision system. Based on these two models, we have developed a set of C++ class libraries. Using this set of libraries, we can estimate robot pose errors or depth estimation errors based on kinematic errors. Furthermore, we can apply these libraries to find the key factors that affect accuracy. As a result, more reasonable minimum tolerances or manufacturing requirements can be defined so that the manufacturing cost is reduced while retaining relatively high accuracy. Besides providing an approach to find the key factors and best settings of key parameters, we demonstrate how to use a cost-tolerance model to evaluate the settings. In this way, we can implement optimal design for manufacturing(DFM) in enterprises. Because our models are derived from the Denavit-Hartenberg transformation matrix, differential changes for the transformation matrix and link parameters, and the fundamental algorithm for estimating depth using stereo cameras, they are suitable for any manipulator or stereo active vision system. The remainder of this article is organized as follows. Section 2 derives the model for analyzing the effect of parameter errors on robot 3
منابع مشابه
Design of an Adaptive Fuzzy Estimator for Force/Position Tracking in Robot Manipulators
This paper presents a stable new algorithm for force/position control in robot manipulators. In this algorithm, position vectors are measured by sensors and then used in the control law. Since using force sensor has some issues such as high costs and technical problems, an approach is presented to overcome these issues. In this respect, force sensor is replaced by an adaptive fuzzy estimator to...
متن کاملRobot Motion Vision Part II: Implementation
The idea of Fixation introduced a direct method for general recovery of shape and motion from images without using either feature correspondence or optical flow [1,2]. There are some parameters which have important effects on the performance of fixation method. However, the theory of fixation does not say anything about the autonomous and correct choice of those parameters. This paper presents ...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012